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In a recent paper[Phys. Rev. E69, 046121(2004)], we used the Suzuki-Trottere formalism to study a
quasispecies biological evolution model in a parallel mutation-selection scheme with a single-peak fitness
function and a point mutation. In the present paper, we extend such a study to evolution models with more
general fitness functions or multiple mutations in the parallel mutation-selection scheme. We give some ana-
lytical equations to define the error thresholds for some general cases of mean-field-like or symmetric mutation
schemes and fitness functions. We derive some equations for the dynamics in the case of a point mutation and
polynomial fitness functions. We derive exact dynamics for two-point mutations, asymmetric mutations, and
the four-value spin model with a single-peak fitness function. The same method is applied for the model with
a royal road fitness function. We derive the steady-state distribution for the single-peak fitness function.
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I. INTRODUCTION

An important application of statistical physics outside its
traditional area is the investigation of simple microscopic
biological evolution models[1–14]. Two famous models in
this direction which have wide applications[5] are the Eigen
model[1,2] and the Crow-Kimura model[3,4]. In the Eigen
model[1,2], the species are subjected to mutation during the
process of giving offsprings, so mutation is connected with
the selection and the Eigen model is called a connected
mutation-selection scheme. In the Crow-Kimura model[3,4],
mutations and selections are two independent processes and
the Crow-Kimura model is called a parallel mutation-
selection scheme. Both schemes of mutation selection are
relevant for biology[5]. Some interesting results have been
derived for both discrete time versions[8–10] and the origi-
nal continuous time version[5–7] of the Eigen and the
Crow-Kimura model.

In 1997 Baakeet al. [4] proved that for the parallel
mutation-selection scheme[3] the evolution equations for the
frequencies of different species are equivalent to the
Schrödinger equation(in imaginary time) for quantum spins
in a transverse magnetic field. Both the static[4] and dynam-
ics [7] of the model have been solved exactly with a ferro-
magnetic two-spin interaction fitness function. In 2001 Her-
missionet al. proved that the four-state biological evolution
model can also be related to a quantum spin model[11].

In a recent paper[12], we mapped the Eigen model onto a
quantum spin model with non-Hermitian Hamiltonian. Using
the Suzuki-Trottere formalism[15–17], we studied the statics
and dynamics of the Eigen model and the Crow-Kimura
model with the single-peak fitness function[13] and found
that the relaxation in the parallel model is faster than that in
the connected model[13]. It is of interest to know whether

such an approach can be extended to more general and real-
istic cases. Following our recent works[12,13], in the
present paper we will solve exactly the dynamics of several
more complicated models in the parallel scheme[3,4,6] and
derive some exact results in statics: an error threshold ex-
pression for the model with general fitness functions and
steady-state distribution for the single peak fitness landscape.
We are going to solve models with both binary and(more
realistic) four-value spins. Besides the simplest single-point
mutation, we will investigate also the case of multiple and
asymmetric mutations, which are realistic sometimes
[18,19]. In another paper[14], we will study similar prob-
lems for the evolution model with the connected mutation-
selection scheme[8–10].

Here we first briefly introduce the Crow-Kimura model
[3] and its quantum spin version[4] so that it is easier to
understand its generalizations to be studied in the present
paper. In the simple Crow-Kimura model, any genotype con-
figuration i is specified by the values ofN two-values spins
sk= ±1, 1økøN. We will denote such a configurationi by
Si ;ssi

1, . . . ,si
Nd. The difference between two configurations

Si and Si ;ssi
1, . . . ,si

Nd can be quantitatively represented by
the Hamming distancedij =sN−oksi

ksj
kd /2, which represents

the number of different spins betweenSi andSj. The relative
frequenciespi of different configurations for 1ø i ø2N sat-
isfy the equations

dpi

dt
= pisr i − o j=1

2N
r jpjd + o j=1

2N
mij pj . s1d

Herer i are the fitness(the efficient number of offsprings per
unit period of time) andmij is the mutation rate to move from
the original configuration stateSj to the new genome stateSi
per unit period of time and is given by

mij = g, when dij = 1;−Ng,

when i = j ;0, when dij . 1. s2d

This choice of mutation matrix corresponds to the case of a
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point mutation. Equation(1) with mutation rates of Eq.(2)
makes sure that the condition

o
i=1

2N

pi = 1

will be satisfied during the time evolution ofpi.
The choice of different fitness corresponds to the choice

of different functionsr i = fsSid. It has been observed in[4]
that system(1) with r i ; fssi

1, . . . ,si
Nd evolves according to

the Schrödinger equation at imaginary time

d

dt
o

i

pikstduSl = − Ho
i

pikstduSl, s3d

with the Hamiltonian

− H = go
i=1

N

ssi
x − 1d + fss1

z
¯ sN

z d. s4d

Here S means the spin configuration of theN spinssi = ±1,
uSl is a product ofN spinors, andsx andsz are Pauli matri-
ces

sx = F0 1

1 0
G, sz = F1 0

0 − 1
G

which operate on the column vectors

F1

0
G andF0

1
G

representing spin up and spin down, respectively.
If one originally has some distribution of frequenciespj

0,
then after a period of timet the new distribution should be

pistd =
o j

pj
0kSiue−HtuSjl

Z
,

Z = o
i j

pjs0dZij , Zij = kSiue−HtuSjl. s5d

For the single-peak fitness function, without lost of gen-
erality we choose

fsS1d = J0N, when S1 ; s1,1, . . . ,1d,

fsSid = 0, when Si Þ S1. s6d

To study the dynamics of the system, we should calculate the
matrix elements of the operatorTstd;e−Ht. It can be done in
the Suzuki-Trottere formalism[15–17].

For the mutation scheme of Eq.(4) and the fitness func-
tion Eq. (6), the dynamics has been solved in[13]. In fol-
lowing sections, we will extend the methods of[13] to study
dynamics for other fitness functions and/or mutation
schemes. We will also calculate the error thresholds for the
multiple-site mutations[instead of a single-site mutation in
Eq. (4)].

The following sections are organized as follows. In the
Sec. II, we use the Suzuki-Trottere formalism to derive error

thresholds for very general fitness and mutation schemes. In
Sec. III, we derive a complicated field-theoretical-like equa-
tion for the dynamics with a point mutation and a general
fitness function. In Sec. IV, we derive exact steady-state dis-
tribution for the single-peak fitness function. Using the
simple ansatz from[13], we derive in Sec. V exact relaxation
periods for the royal road fitness function[20] and in Sec. IV
for the realistic case of the four-value spin model. In Appen-
dix A, we give the dynamics for the asymmetric mutations
(mutation fromSi →Sj and fromSj →Si have different rates),
and in Appendix B for the two-point mutations.

II. ERROR THRESHOLDS FOR GENERAL FITNESS
AND MUTATION SCHEMES

A. Error threshold for quadratics fitness
and mutation schemes

Let us consider a more general Hamiltonian

− H = gss1
x
¯ sN

x d + fss1
z
¯ sN

z d,

gss1
x
¯ sN

x d = o
l=1

N

o
1øk1Þk2Þ¯ÞkløN

gl

lNl−1ssk1

x sk2

x
¯ skl

x − 1d,

fss1
z
¯ sN

z d = o
l=1

N

o
1øk1Þk2Þ¯ÞkløN

al

lNl−1sk1

z sk2

z
¯ skl

z . s7d

Here f describes the fitness andg describes the mutation(the
rate of l-point mutations isgl / l). With the accuracy of 1/N,
we can write

gss1
x
¯ sN

x d = No
l=1

N
gl

l
S 1

N
o
k=1

N

sk
xD l

− No
l=1

N
gl

l

; Ng0S 1

N
o
k=1

N

sk
xD − No

l=1

N
gl

l
,

fss1
z
¯ sN

z d = No
l=1

N
al

l
S 1

N
o
k=1

N

sk
zD l

; Nf0S 1

N
o
k=1

N

sk
zD . s8d

One can calculate the dynamics by means of Eq.(5). In the
future we can neglect the constant term ing of Eq. (8), due to
symmetry of Eqs.(3)–(5); see also Ref.[13].

To define the phase structure of the model(error thresh-
old), we need only to consider a simpler partition

Z0 = Tre−Hb; s9d

i.e., the dynamical problem of Eq.(1) becomes a simple
problem of statistical mechanics.

One can interchangesx and sz in H and Eq.(9) will be
invariant. Therefore, it is possible to get the same phase
structure, replacing the functions of mutation and selection.

Let us consider a quadratic form for both fitness and mu-
tation:
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− H = g1o
k=1

N

sk
x +

g2

2N
o

k1Þk2=1

N

sk1

x sk2

x + a1o
k=1

N

sk
z

+
a2

2N
o

k1Þk2=1

N

sk1

z sk2

z . s10d

To transform the quantum statistical mechanical problem
into a problem in classical mechanics, instead of quantum
spinssx, sz, we introduceNsL+1d classical spinssk

l , 1øk

øN, 1ø l øL+1 (corresponds to introducing the identityÎ
=oaualkau between any bracketsulku), and use an identity
TreA+B=TrfeA/LeB/LgL for a largeL [15]. Using the Stratanov-
ich transformation

expF g2

2N
o

k1Þk2=1

N

sk1

x sk2

x b

LG
=ÎNbg2

2pL
E

−`

`

dzlexpF− Nbg2
zl

2

2L
+

b

L
zlg2o

k=1

N

sk
xG

s11d

for Zij =kSiue−HbuSjl, we have

Zij = TrHexpFSg1o
k=1

N

sk
x +

g2

2N
o

k1Þk2=1

N

sk1

x sk2

x Db

LG
3expFSa1o

k=1

N

sk
z +

a2

2N
o

k1Þk2=1

N

sk1

z sk2

z Db

LGJL

=p
l=0

L ÎNbg2

2pL
E

−`

`

dzlTrsexpF− Nb g2o
l

zl
2

2L
+

b

L
o

l

3sg1 + zlg2do
k=1

N

sk
x + Sa1o

k=1

N

sk
z +

a2

2N
o

k1Þk2=1

N

sk1

z sk2

z Db

LG .

s12d

Here Trs means a summation over all spin configurations
osk

l =±1. We take for the boundary configurations the follow-
ing: sk

1 is thekth component ofSj andsk
L+1 is thekth compo-

nent ofSi. We then use a representation of thesx in the basis
of usl, s= ±1 and for smallx:

ks1uesxxus2l = eBss1s2−1d, e−2B = x. s13d

For the partitionZ0 at the limit L→`, in this way it is pos-
sible to derive[12,16,17]

Z0 = p
l=0

L ÎNbg2

2pL
E

−`

`

dzlTrs expF− Nbo
l

g2zl
2

2L

+ o
l=1

L

o
k=1

N

Blssk
l sk

l+1 − 1d +
bN

L
o
l=1

L

a1Sok=1

N
sk

l

N
D

+
a2

2
Sok=1

N
sk

l

N
D2G ,

Bl =
1

2
ln

L

bsg1 + zlg2d
. s14d

While considering theZ0 (instead ofZij) we sum boundary
spins, which are symmetricssk

1=sk
L+1d. In the last expression

the interaction is only via magnetizationml ;ok=1
N sk

l /N. We
introduce magnetization variableml and corresponding
Lagrange coefficient bhl. Using the identity
pl NedmldsNml −ok sk

l d=1 and an integral representation for
a d function: sb /2piLde−i`

i` dhlexpf−sNb /Ldhlml +
b
Lhlok sk

l g
=dsNml −ok sk

l d, we derive

Z0 = p
l=1

L Îg2

i
S b

2p
D3/2E

−i`

i`

dhlE
−`

`

dzldmlTrs

3expHo
l
FbSa1ml +

a2ml
2

2
D −

bg2

2
zl

2 − bhlmlG
+ o

l
Sb

L
hlo

k=1

N

sk
l + Blo

k=1

N

ssk
l sk

l+1 − 1dDJ . s15d

Hereb=Nb /L. In the last expression spinssk
l with different

k decouple and we can perform calculations, considering the
saddle point viaml and hl. We takehl =h, ml =m, zl =M, B
= 1

2 ln fL /bsg1+g2zdg and missing the preexponent terms to
derive

Z0 , E
−i`

i`

dhE
−`

`

dMdmexpF−
Nbg2

2
M2 − Nbhm

+ NbSa1m+ a2
m2

2
D + N ln zsB,h/L,Ld − NBLG ,

s16d

where zfB,h/L ,Lg is the partition function of the one-
dimensional(1D) Ising model with inverse temperatureB
and magnetic fieldh/L. We should consider different saddle
point solutions form andh and choose the one with maximal
value in the exponent.

We have an expression for the 1D IsingL spin partition in
a magnetic fieldh/L [21] at an inverse temperatureB:
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zSB,
h

L
,LD = o

sl

expFBo
l=1

L

slsl+1 +
bh

L
o
l=1

L

slG
= z+

L + z−
L.

Here z±=heB coshsbh/Ld±Îe2B sinh2sbh/Ld+e−2Bj. For a
small bh/L, we have

zSB,
h

L
,LD < eBLFS1 +

b

L
Îh2 + sg1 + Mg2d2DL

+ S1 −
b

L
Îh2 + sg1 + Mg2d2DLG

< 2eBLcoshfbÎh2 + sg1 + Mg2d2g. s17d

Combing all the formulas and missing the preexponent, we
have

Z0 , E
−`

`

dmdME
−i`

i`

dhexpHNF− bg2
M2

2
− bhm

+ bSa1m+ a2
m2

2
D + ln2 coshfbÎh2 + sg1 + g2Md2gGJ .

s18d

If we put the saddle point condition viam, h=a1+a2m, the
last equation transforms into

Z0 , E
−`

`

dmdMexpFNS− bg2
M2

2
− ba2

m2

2

+ ln2 coshfbÎsa1 + a2md2 + sg1 + g2Md2gDG .

s19d

Herem is a longitudinal magnetization andM is a transverse
one. We see a symmetry under the transformation

a1 → g1, a2 → g2, m→ M .

The self-duality point corresponds to the casea1=g1 and
a2=g2.

Let us consider the interesting casea1=0. At the b→`
and large-N limits, the equations are simplified, and we have

1

N
ln Z0 → F− bg2

M2

2
− ba2

m2

2
+ bÎsa2md2 + sg1 + g2Md2G .

s20d

There is a paramagnetic(no selection) phase withm=0 and
M =1, and

1

N
ln Z0 = bsg1 + g2/2d. s21d

In the ferromagnetic phase(successful selection), we should
consider the saddle point of Eq.(20) with nonzerom:

M =
g1

a2 − g2
,

m=Î1 −
g1

2

sa2 − g2d2 . s22d

At the phase transition point, we havem=0. Therefore, error
threshold corresponds to

a2 . g1 + g2. s23d

Equations(22) and(23) at theg2=0 coincide with the result
of [4].

B. Error threshold for the general mean-field-like
mutation and fitness schemes

Now we consider any mean-field-like symmetric mutation
schemes. Besides the single-site mutation at any sitek with
rate g1, there are multiple mutations with a change of 2n

spins per generation. In this case it is possible to repeat our
derivations. Let us take one point, two-point and four-point
mutations:

gssxd = g1o
k=1

N

sk
x +

g2

2N
o

k1Þk2=1

N

sk1

x sk2

x

+
g4

4N3 o
k1Þk2Þk3Þk4=1

N

sk1

x sk2

x sk3

x sk4

x . s24d

For the four-point mutation, we use the formula

ec/4sad4 =Î c

p
E

−`

`

dxexpf− cx2 + xa2cg

=
c

p
E

−`

`

dxdyexpf− cx2 − cy2 + 2cyÎxag. s25d

Let us take a=oksk
x/N and c=Nbg4/L. In the Suzuki-

Trottere formalism we should introduce at any sitel the in-
tegration viadxl, dyl, dzl [similar to dzl integration in Eq.
(12)]. Repeating the calculation of the previous section, for
the mutation scheme of Eq.(24) and fitness functionf0 we
derive an expression

Z , E
−`

`

dmdzdxdyE
−i`

i`

dhexpf− Nbg2
z2

2
− Nbg4x

2

− Nbg4y
2 + Nh ln2coshfbÎsg1 + g2z+ 2yÎxd2 + h2g

− bhm+ bf0smdj. s26d

Let us introduce an identity

1 =E
−`

`

dbdsb − g1 + g2z+ 2yÎxd

=
1

2pi
E

−`

` E
−i`

i`

dMdbexpfMsb − g1 + g2z+ 2yÎxdg.

The integration of the auxiliary variablesdxl, dyl and dzl
gives
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Z , e dhdmdMdbexphNfln2coshsbÎb2 + h2d − bhm− bMb

+ bg0sMd + bf0smdgj. s27d

We should consider the saddle point of the last integral. At
the limit b→`, the equations become very simple:

ln Z = NbfÎb2 + h2 − hm− Mb + g0sMd + f0smdg,

b = g08sMd, h = f08smd,

m=
h

Îb2 + h2
, M =

b
Îb2 + h2

. s28d

According to the last two equationsÎb2+h2−hm−Mb=0,
M2+m2=1; therefore we should look for a maximum of
ln Z/b, equivalent to the mean fitness

ln Z

b
= Nfg0sMd + f0smdg, s29d

at m2+M2=1, −1ømø1, and −1øM ø1. Herem describes
the longitudinal magnetization,m, øszø andM the trans-
verse one,M , øsxø. To find the error threshold, we
should find parameters of functionsf0 and g0 such that the
ferromagnetic-phase solution[saddle point of Eq.(29) with
m.0] coincides with the paramagnetic solution[M =1, m
=0, f0s0d=0]:

f08smd = g08sÎ1 − m2d
m

Î1 − m2
,

g0sÎ1 − m2d + f0smd . g0s1d. s30d

We derived Eq.(27) for the one-point, two-point and four-
point mutations. It can be derived also if there are anyl
=2k multiple mutations. For expfNbolglsoksk

x/Ndl / lg one
should perform several Stratanovich transformations(kl vari-
ablesz for l =2kl; the total number of differentz is K=olkl),
eventually having only first degree ofsk

x:

expFo
l

Nb
gl

l
Sok

sk
x

N
D lG

=E
−`

`

DszdexpFok
sk

x

N
fsz1 . . .zKdG , s31d

whereDẑ is some integration measure with a Gaussian dis-
tribution for a vectorẑ;hz1¯zKj and fsz1¯zKd is some
function. The situation is similar to one in Eq.(26), and
sg1+g2z+2yÎxd should be replaced byfsz1¯zKd. Perform-
ing integration viaDẑ, we will return to the expression in Eq.
(27). We guess that Eqs.(27)–(30) are correct for any mean-
field-like mutation scheme in Eq.(7) and (8), but we could
not prove this conjecture yet. Perhaps it can be proved in the
general case by means of a high-temperature expansion.

It has been shown in[6] that for the fitness as a quadratic
function of magnetizationm, the mean fitnessfmean defines

also the surplus of the distribution,s=oi=1
2N

piol=1
N si

l /N:

f0ssd = fmean. s32d

Arguments of[6] actually can be applied for any mean-field
fitness. Let us give their qualitative derivation. We assume
that in the steady state the majority of the population is at
some Hamming distanced. Then we have immediately for
the surplus s=1−2d/N and mean fitnessfmean= f0s1
−2d/Nd. Therefore we derive an equation

f0ssd = g0sÎ1 − m2d + f0smd, s33d

wherem is given by Eq.(29). Let us consider a simple site
mutation withg0sMd=Mg and a flat peak with a fitness

f0smd = J0N, m0 ø mø 1,

f0smd = 0, 0ø mø m0, s34d

wherem is the overlap of the configuration with the peak one
and the Hamming distance isd=s1−mdN/2. Whenm0→1,
we recover the single-peak landscape. At the paramagnetic
phase we have lnZ=Nbg and at the ferromagnetic phase we
takem=m0 andM =Î1−m0

2. We immediately derive the error
threshold condition

J0 . gs1 −Î1 − m0
2d. s35d

Therefore flatness shifts the error threshold. The role of flat-
ness has been investigated in Refs.[22–24]. The idea of “the
survival of the flattest” at high mutation rates has been pro-
posed in[23]. We guess that the role of fitness is more cru-
cial in the stable environment while flatness(neutrality) may
become a main factor in dynamic environments.

C. Error threshold for a single-peak fitness
and any symmetric mutation schemes

Our results from the previous subsections concern only
mean-field-like mutations when two spins are chosen arbi-
trary from all sites. A more realistic case in nature is the
existence of some geometry, when, for example, two neigh-
boring spins are flipped simultaneously. We cannot solve
such a situation for the general case of fitness, but the picture
for the single-peak fitness function is very simple. In the
Suzuki-Trottere approach, the classical Hamiltonian is a sum
of two terms: without interaction terms(free diffusion) and
with an interaction term, when all the intermediate configu-
rationsSl coincide with the peak oneS1. In thermodynamic
limit, one should keep either interaction term or only muta-
tion term.

For the case of a single-point mutation with a rateg1,
double- and triple-(neighbor) site mutations with a rateg2
and g3, we have an expression forZ in Suzuki-Trottere ap-
proach:

Z =Hexpo
k
Fsg1sk

x + g2sk
xsk+1

x + g3sk
xsk+1

x sk+2
x d

b

L
G

3expFbJ0N

L
Sok

sk
z

N
DpGJL

s36d

at p→`. When we ignore the diffusion, we have an expres-
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sion lnZ=NJ0b. The diffusion term at the limitb→` gives
that lnZ=bNsg1+g2+g3d. Therefore we have for the error
threshold

J0 . g, s37d

where g=g1+g2+g3 is a total rate of all mutations in the
system. This result could be generalized for any other sym-
metric mutation scheme, withg as a total mutation rate.

III. DYNAMIC EQUATION FOR THE
POLYNOMIAL FITNESS

Let us consider the dynamics for the Hamiltonian with a
single-point mutation:

− H = go
k=1

N

ssk
x − 1d + f0Soi=1

N
si

z

N
D . s38d

For the partitionZij ;ZsSi ,Sjd=kSiue−HbuSjl at the limit L
→`, simple derivations similar those in Sec. II A give

ZsSi,Sjd = Fsinhs2bg/Ld
2

GLN/2

p
l=1

L
bN

2piL
E

−i`

i`

dhlE
−`

`

dml

3 expF−
Nb

L
o

l

hlml +
Nb

L
o

l

f0smld − gbN

+ N ln zfB,hhl/Lj,LgG , s39d

wherezfB,hhl /Lj ,Lg is the partition of the 1D Ising model
with inverse temperatureB and magnetic fieldhl /L at posi-
tion l. If we considerZ0=Tr e−bH, then the saddle point equa-
tions for the ferromagnetic phase are

ln Z0 = N ln 2coshfbÎh2 + g2g + Nbf0smd − Nhbm− gbN,

h = f08smd,

m=
h

Îh2 + g2
tanhfbÎh2 + g2g. s40d

To calculate Zi,j we consider a continuous function
hsxd ,0øxø1. Thenhl in Eq. (39) are given by a function
hsl /Ld=hl.

We define the functional z(B,hsxd ,b)
;zfB,hhl /Lj ,Lgexpf−NBLg as

zsB,hsxd,bd = o
sl

expFBo
l

sslsl+1 − 1d +
bhsl/Ld

L
o

l

slG
; Trs1 + s xdp

l

ĝl ,

ĝ11 = expF1 + b
hsxd

L
G ,

ĝ22 = expF1 − b
hsxd

L
G ,

ĝ12 = g21 = expf− 2Bg =
gb

L
. s41d

Therefore, we have a representation for thez(B,hsxd ,b):

z„B,hsxd,b… = Trs1 + s xd Ĝsbd

Ĝsbd = T̂ expFE
0

b

dxshsxdsz + gsxdG , s42d

where in the right part of the equation the exponent is time
ordered. The last expression is a solution of the equation

dĜ/dx=Ĝfhsxdsz+gsxg.
Then instead of Eq.(40) one should consider the saddle

point of

ln kSiuTstduSjl = N ln Trs1 + s xd Ĝsbd + NE
0

b

dxff0„msxd…

− hsxdmsxdgdx− gNb,

hsxd = f08fmsxdg. s43d

Using the last equation we reformulate the variation prob-
lem: to find the maximum of

ln kSiuTstduSjl = N ln Trs1 + s xd Ĝsbd + NE
0

b

dxhf0fmsxdg

− msxdf08fmsxdgj − gbN s44d

over all distributions ofmsxd, 0,x,b, where

Ĝsbd = T̂ expHE
0

b

dxexpff08fmsxdgsz + gsxgJ ,

ms0d = mi ,

msbd = mf . s45d

The maximum condition of Eq.(43) gives

msxd =
Trs1 + s xd Ĝsxds zĜsxd−1Ĝsbd

Trs1 + s xd Ĝsbd
,

Ĝsbd = T̂ expHE
0

b

dyhf08fmsydgsz + gsxjJ . s46d

One can check that atb→`, Eq. (46) transforms to the last
equation of Eqs.(40) with msxd=m outside the boundaries 0
and b. We can compare our equation(46) with Eq. (61) in
[7]. Actually they suggested an ansatz

Ĝsxd = exphxff08sf„msxd…dsz + gsxgj, s47d

where fssd is some function. In principle it is possible to
solve Eq. (46) numerically to define the relaxation to the

steady state. Having an expression ofĜsbd one can calculate
the dynamics of distributionspistd using Eqs.(5) and (44).
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IV. SINGLE-PEAK FITNESS LANDSCAPE

A. Relaxation in a single-peak fitness landscape

Let us briefly give the results of our work[13] for the
relaxation in a single peak fitness landscape of Eq.(6).

In the Hamiltonian there are transverse terms(functions
of sx), longitudinal terms(function of sz), and diagonal
terms(constant terms). While calculating matrix elements of
evolution operatorkSi ue−tH uSjl, one can miss either trans-
verse or longitudinal terms. This is an exact result at the
thermodynamical limit. Let us consider an evolution from
some original configurationSi, having an overlapNm with
the peak configurationSi: kS1uSil=ok=1

N sk
i sk

1=Nm. First there
is a random diffusion phase until the momentt0. Whent. t0,
one has

kS1uexpf− HtguSil = kS1ue−Hintst−t0duS1lkS1uexpf− HinttguSil,

s48d

wheret0 is defined from the maximum condition of Eq.(48).
For other configuration we take

kSjuexpf− HtguSil = kSjuexpf− Hdif ftguSil. s49d

We miss the transverse part of the Hamiltonian and take
Hint=sJ0−gd uS1lkS1u. In Hdif f, the interaction term is missed.

When the partition of the peak configurationkS1ue−Ht uSil
is becoming larger than the sum of partitions by other con-
figurationso jÞ1 kSj ue−Ht uSil, system relaxes to the steady-
state configuration.

There is an equation fort0:

tanhfgt0g =
1 − m0

k + Îk2 − 1 +m0
2
, s50d

wherek=J0/g.
For the relaxation periodt1 we derive

t1sJ0,g,md

=
FJ0t0 −

1 + m

2
ln coshsgt0d −

1 − m

2
ln sinhsgt0dG

J0 − g
.

s51d

The error threshold condition is given by Eq.(37).

B. Steady-state distribution

Let us consider directly the steady-state distribution of
Eq. (1) with the single-peak fitness of Eq.(6). We assume
below the error threshold

p1 , 1,

psi+1d , 1/Ndsi,1d, s52d

where dsi ,1d is the Hamming distance betweenS1 and Si.
Then it is easy to find the steady-state solution. We can group
different configurations with the same distance fromS1 into
the classes. The first class contains only the peak configura-

tion. For thepi from the classk the total probability of the
class is

,
Nk−1

sk − 1d! YNk−1 , 1.

While considering the evolution ofp1,

dp1

dt
= sJ0 − gdNp1 + g o

i,dsi,1d=1
pi − p1

2J0N,

we can miss the second term on the right-hand side, as the
sum is over configurations of the second class, there areN
ones with a value,1/N. At the statics we have, for the
probability of a peak configuration and mean fitness

p1 =
J0 − g

J0
,

o
j

pjr j = sJ0 − gdN. s53d

For thep2 we again ignore the influence of thekth classes
with k.2 classes and take into account the flux from the first
class. Putting the solution of Eq.(53) into the equation for
the p2, we derive

dp2

dt
= − gNp2 + gp1 − p2J0Np1,

p2 = p1
g

J0N
. s54d

In the same way we have for the classk.1

pk+1 = p1k ! S g

J0N
Dk

. s55d

It is easy to check that the total probability is equal to 1:

p1F1 + o
i.1

i!

Ni

N!

i ! sN − id! S g

J0
DiG <

J0 − g

J0

1

1 −
g

J0

= 1.

s56d

Equations(53) and (55) define a microscopic distribution of
probabilities in a steady state of quasispecies.

C. Single-peak landscape with asymmetric mutations

Asymmetric mutations recently have been investigated in
[26], and several results have been derived for simplified
versions of the parallel mutation-selection scheme. Now be-
sides symmetric mutations with ratex there are also asym-
metric ones with the ratey, and the HamiltonianH is given
by [26]

H = Fxo
i

ssi
x − Id − yo

i

sisi
y + si

zdG + fss1
z
¯ sN

z d,

s57d

where the rate +1→−1 is x+y and the rate −1→ +1 is x
−y. We take again a single-peak landscapefsS1d=J0N and
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fsSid=0, i .1. In this subsection we derive the expression for
the steady-state distribution and error threshold in Appendix
A we will solve the dynamics.

Let us consider directly the nonlinear differential equation
version of the model with mutation scheme of Eq.(57). We
assume that in the peak configurations there is ak fracture of
si =1 and 1−k fracture ofsi =−1. Now we have an equation

dp1

dt
= fJ0 − x + s1 − 2kdygNp1 − p1

2J0N. s58d

Therefore we have for thep1 and mean fitness

p1 =
J0 − x − s2k − 1dy

J0
,

o
j

pjr j = J0fx − s2k − 1dygN. s59d

As p1 should be nonzero, we have an error threshold condi-
tion

J0 . x + s2k − 1dy. s60d

V. ROYAL-ROAD-LIKE FITNESS FUNCTION

The results of the single-peak landscape are meaningful
for the infinite-population limit. Let us consider a construc-
tion for the fitness that can work for smaller populations.
Before we specified the indices of 2N configurations via the
collection ofN spinssj

i , Sj ,hsj
1
¯sj

Nj. Let us group those6
spins into K subgroups of n spins, Sj
,hssj

1
¯sj

nd ,ssj
n+1

¯sj
2nd¯ ssj

N−n
¯sj

Ndj. There is a hierarchy
structure of configurations with a branchingQ=2n. At the
first step we consider just different collections ofsj

1
¯sj

n.
There are 2n points at this level. At the second level we
involve also the second group of spins and considerSj
,hssj

1
¯sj

nd ,ssj
n+1

¯sj
2ndj. There are 22n points at this level.

At the lth level we have 2ln points and at the lastKth level
there are 2N spin configurations. The peak configuration has
a spin specifications1

i =1 for all 1ø i øN. Such problem is
exactly solvable in dynamics. We write a royal-road-like[20]
fitness function

fsSd
n

= j1Fs1 + ¯ + sn

n
GpFsn+1 + ¯ + s2n

n
Gp

¯ FsN−n+1 + ¯ + sN

n
Gp

+ j2Fsn+1 + ¯ + s2n

n
Gp

¯ FsN−n+1 + ¯ + sN

n
Gp

+ ¯

+ jKFsN−n + ¯ + sN

n
Gp

. s61d

We take a mutation scheme as in Eq.(2). For the full con-
centration in the vicinity of the peak configuration we have a
condition

g , j l s62d

similar to Eq.(37). Let us now consider the dynamics. Due
to our construction, the last group ofn spins would first
relax. Assume that have an overlapmK with the peak con-
figuration: o j=1

n sN−n+j =nmK. At the first stage only the last
term in Eq.(61) is relevant. Therefore, the system will relax
to the configuration with the last subchain equal to
h1,1, . . . ,1j after periodtK= t1smK , jK ,gd. Next we consider
the step relaxation at theK−1 level. Now the term

jK−1FsN−2n + ¯ + sN−n

n
GpFsN−n+1 + ¯ + sN

n
Gp

is relevant. The last multiplier is equal to 1, assN−n+i =1, for
i =1, n. Again we have a situation of fitness function in Eq.
(6).

After K steps we have

t = o
l=1

K

t1s j l,gl,md, s63d

wheret1 is defined by Eq.(51). We used spin model repre-
sentation with integern for the simplicity of derivation and

our results could be generalized to a large class of hierarchic
fitness functions which are realistic in biology. When is such
a deterministic dynamics valid? A minimal number of mol-
ecules is,2N/K, less than 2N, necessary for the single-peak
fitness function. Perhaps there are collective driven random
walks; then, when the number of individuals is becoming
more than 2N/K, quasispecies equations begin to work.

In principle we can give another version of the block spin
interaction, like the original version of the royal road fitness
[20]:

fsSd
n

= j1Fs1 + ¯ + sn

n
Gp

+ j2Fsn+1 + ¯ + s2n

n
Gp

+ ¯

+ jKFsN−n + ¯ + sN

n
Gp

. s64d

Now different blocks of spins relax in a parallel way; there-
fore the total relaxation period should be the maximal among
all t1s j l ,gl ,md. The error threshold condition is again given
by Eq. (62).

VI. RELAXATION IN THE FOUR-VALUE SPIN MODEL

Let us consider a model[11], where at every sitei there
are two spinssi

1, si
2; for the DNA case one can take the

following identification: ++,A, +−,G, −+,C, −−,T.
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There areA−G, C−T transitions with ratem2; A−T, G−C
transitions with ratem3; andA−C, T−G transitions with rate
m1. According to Kimura one takesm2.m1.m3. It has been
proposed in[11] that the evolution dynamics again can be
described by an equation like Eq.(4) with the Hamiltonian

− H = o
i=1

N

fm1ssi,1
x − 1d + m2ssi,2

x − 1d + m3ssi,1
x si,2

x − 1dg

+ fss1,1
z ,s1,2

z
¯ sN,1

z ,sN,2
z d. s65d

Here operatorssi,1
z , si,1

x act in the Hilbert space of the first
spin in the sitei and si,2

z , si,2
x in the Hilbert space of the

second spin in the sitei. One again has

kS1uTstduSil → kS1uTintst − t0duS1lkS1uTdif fst0duSil

= eNfst0d−Nsm1+m2+m3dt+NJ0st−t0d, s66d

where the functionfst0d is defined via amplitudes of transi-
tion with flips: Nx1 like m1, Nx2 like m1, Nx3 like m3 and
Ns1−x1−x2−x3d diagonal one:

fsm1,m2,m3,x1,x2,x3,td

= x1lnk+ + ueH0tu − + l + x2lnk+ + ueH0tu + − l

+ x3lnk+ + ueH0tu − − l + s1 − x1 − x2 − x3d

3ln k+ + ueH0tu + + l,

H0 = sm1s1
x + m2s2

x + m3s1
xs2

xd. s67d

In the last system one calculates the matrix element of the
two-spin system. It is easy to derive

fsm1,m2,m3,x1,x2,x3,t0d = s2 − x1 − x2 − x3dlnf coshsm1t0d coshsm2t0d coshsm3t0d + sinhsm1t0dsinhsm2t0dsinhsm3t0dg

+ x3ln fsinhsm1t0dsinhsm2t0dcoshsm3t0d + coshsm1t0d coshsm2t0dsinhsm3t0dg

+ x1lnfsinhsm1t0dcoshsm2t0dcoshsm3t0dg + x2lnfsinhsm2t0dcoshsm1t0dcoshsm3t0dg. s68d

One should take value oft1 from the optimum condition of
Eq. (66):

J0 =
dfsm1,m2,m3,x1,x2,x3,t0d

dt0
. s69d

Having t0, it is possible to define the relaxation period

t1 =
J0t0 − fsm1,m2,m3,x1,x2,x3,t0d

J0 − sm1 + m2 + m3d
. s70d

At the limit of small distance between the original and fit
configurationsx1!1, x2!1, x3!1

t0 <
1

J0
sx1 + x2 + x3d,

t1 <
1

J0
Fsx1 + x2 + x3d ln

e

sx1 + x2 + x3dG
+

1

J0
Fx1 ln

J0

m1
+ x2 ln

J0

m2
+ x3 ln

J0

m3
G . s71d

This expression coincides with the corresponding one in[13]
in the main approximation(after the redefinitionJ0→J0/2).

For the Kimura two-parameter model, we havem1=m3
and

t1 <
1

J0
Fsx1 + x2 + x3d ln

e

sx1 + x2 + x3dG
+

1

J0
Fsx1 + x3d ln

J0

m1
+ x2 ln

J0

m2
G . s72d

We can repeat the derivation of Sec. IV B for the steady-
state distribution. Equation(37) is still correct, butg should
be replaced by the total rate of mutations. Thus we have the
error threshold condition

J0 . sm1 + m2 + m3d. s73d

For the peak configuration probabilityp1 and mean fitness,
we have

p1 =
J0 − sm1 + m2 + m3d

J0
,

o
j

pjr j = fJ0 − sm1 + m2 + m3dgN. s74d

VII. CONCLUSION

To conclude, in the present paper we give a comprehen-
sive investigation of quasispecies models in a parallel
mutation-selection scheme. We extend our earlier results
about the dynamics of the model with a single-peak fitness
function and a single mutation per generation[13] to more
complicated cases: two-point mutations, single-point asym-
metric mutations, and four-value spin models with a single-
peak fitness function, as well as for the royal road fitness
function. We derive a field-theoretical-like equation, Eq.
(46), for the dynamics of any mean-field-like fitness func-
tion. We derive the error threshold for the parallel scheme
with any mean-field-like fitness function and rather general
multiple-point mutation schemes, Eq.(30), which can be for-
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mulated as a simple maximum problem for Eq.(29). It
should be noted that in[26], the authors considered the
mean-field fitness for a simplified parallel scheme model: the
maximum principle considered in[26] qualitatively re-
sembles Eq.(29) of the present paper.

The quasispecies concept is becoming more and more
popular[25]. In the present paper, we show that many prob-
lems for parallel models[3,4,6] can be solved exactly; there-
fore there is no need for a further simplification of the evo-
lution models, which is the usual practice in biological
research. Some principal aspects of evolution could be
missed due to too much simplification[13].

We hope that our exact results for parallel models(error
thresholds, surplus, steady-state distributions) could be use-
ful for practical applications, as parallel scheme sometimes
are related to real systems[5,6] and sometimes one is using
them as a methodologically simpler(compared with Eigen
model) way to investigate complex biological problems[22].
The methods developed in this work for the complicated
mutation scheme could be applied to solve exactly the mu-
tation landscape introduced in[27]. The mutation landscape
could be quite realistic for retro-viruses[28].
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APPENDIX A: ASYMMETRIC MUTATIONS
FOR TWO-VALUE SPINS

To solve the dynamics of the system defined by the
Hamiltonian of Eq.(57), we need to calculatek±uexpfAtg u ± l
with A=xsx− iysy−ysz. First we should make diagonal the
matrix A with elements −y, x−y; x+y, y. We have for the
eigenstates

l1,2= ± x,

u1l = hsx − yd,sx + ydj,

u2l = h1,− 1j,

k1u1l = 2sx2 + y2d, k2u2l = 2, k1u2l = − 2y. sA1d

Thus there is a representation

u− l =
1

2x
u1l −

sx − yd
2x

u2l,

u + l =
1

2x
u1l +

sx + yd
2x

u2l. sA2d

A is not a symmetric matrix; thus two eigenvectors are not
orthogonal. Let us expandu+l=a1u1l+a2u2l, u−l=b1u1l
+b2u2l. Then we have

k+ uTstdu + l = el1tfk1u1la1
2 + k2u1la1a2g

+ el2tfk2u2la2
2 + k1u2la1a2g,

= extFsx2 + y2d
1

2x2 − y
sx + yd

2x2 G
+ e−xtF sx + yd2

2x2 − y
sx + yd

2x2 G , sA3d

k− uTstdu − l = el1tfk1u1lb1
2 + k2u1lb1b2g

+ el2tfk2u2lb2b2 + k1u2lb1b2g

= extFsx2 + y2d
1

2x2 + y
x − y

2x2 G
+ e−xtF sx − yd2

2x2 + y
sx − yd

2x2 G , sA4d

k− uTstdu + l = el1tfk1u1la1b1 + k2u1la1b2g

+ el2tfk2u2la2b2 + k1u2lb1a2g

= extFsx2 + y2d
1

2x2 + y
x − y

2x2 G
+ e−xtFsy2 − x2d

1

2x2 − y
x + y

2x2 G , sA5d

k+ uTstdu − l = el1tfk1u1la1b1 + k2u1lb1a2g

+ el2tfk2u2la2b2 + k1u2lb1a2g

= extFsx2 + y2d
1

2x2 − y
x + y

2x2 G
+ e−xtFy2 − x2

2x2 − y
x + y

2x2 G . sA6d

For given initial and fit configurations one should calculate
the number of different mutationsn++,k+uTu +l, n−−

,k−uTu−l, n+−,k+uTu−l, andn−+,k−uTu +l.
We take

fsx,y,td = ln fk+ uTstdu + ln++k− uTstdu− ln−−

3k+ uTstdu− ln+−k− uTstdu + ln−+g sA7d

and derive relaxation periodst0, t1:

J0 =
dfsx,y,t0d

dt0
,

t1 =
J0t0 − fsx,y,t0d

J0 − x − ys2k − 1d
. sA8d

We used the fact that

kS1uexpf− HtguS1l = expfJ0Nt − Nys2k − 1dtg.
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APPENDIX B: DYNAMICS FOR TWO-POINT
MUTATIONS

Let us consider the dynamics of the system defined by the
Hamiltonian

− H = g1o
i=1

N

ssi
x − 1d +

g2

N
o

1øi, j

N

ssi
xs j

x − 1d + fss1
z
¯ sN

z d.

sB1d

In the Suzuki-Trottere scheme one needs to calculate

kSiuexpSg1to
i=1

N

ssi
x − 1d +

g2t

N
o

1øi, j=1

N

ssi
xs j

x − 1dDuSjl.

Let us perform Stratanovich transformation

expFg2t

N
o

1øi, jøN

si
xs j

xG = expFg2t

2N
So

i=1

N

si
xD2

− N
g2t

2 G
=Î N

2p
E

−`

`

dzexpF−
Nz2

2

+ zÎg2t o
1øiøN

si
x − N

g2t

2 G .

sB2d

Similar to the derivations in the Sec. II, we take for
kS1uTstd uSil,

kS1uTintst − t0duS1lkS1uTdif fst0duSil

=Î N

2p
E

−`

`

dzexpfNfsm,z,t0d − Nsg1 + g2/2dt0

+ NJ0st − t0dg. sB3d

The saddle point condition byz gives

z= Îg2t0F1 + m

2
tanhsg1t0 + Îg2t0zd

+
1 − m

2 tanhsg1t0 + Îg2t0zd
G . sB4d

The functionfsm,z,t0d in Eq. (B3) is defined as

fsm,z,t0d = −
z2

2
+

1 + m

2
ln coshfg1t0 + zÎg2t0g

+
1 − m

2
ln sinhfg1t0 + zÎg2t0g,

kS1uTintst − t0duS1lkSiuTdif fst0duS1l

= eNfsm,z,t0d−Nsg1+g2/2dt0+NJ0st−t0d. sB5d

To find the relaxation periodt1 one should consider an addi-
tional constraint that the contribution of Eq.(B3) to partition
Z=o jkSj ue−Ht uSil is larger compared with the contribution of
other configurations,o jÞikSjue−HtuSil=1:

expfNfsm,z,t0d − Nsg1 + g2/2dt1 + NJ0st1 − t0dg ù 1,

t1 =
J0t0 − fsm,t0d

J0 − sg1 + g2/2d
. sB6d

Let us consider first the casem=0. Now we have a simpler
expression for thef:

fsm,z,t0d = −
z2

2
+

1

2
ln

1

2
sinhf2sg1t0 + zÎg2t0g.

The saddle point condition viaz and t0 gives a system of
equations

Ît0g2

z
= tanhf2sg1t0 + Îg2t0zdg,

g1 +
z

2
Îg2

t0
J0

= tanhf2sg1t0 + Îg2t0zdg,

fst0d = −
z2

2
+

lnhsinhf2sg1t0 + zÎg2t0dg/2j
2

. sB7d

We can simplify this system. Let us putJ0=1; later we can
recoverJ0 using a rescalingg0→g0/J0, g1→g1/J0. First, z
can be expressed byt0 from the first and second equations of
a system(B7):

z= Ît0
− g1 + Îg1

2 + 2g2

Îg2

. sB8d

Then we can derive thet0:

g1 + Îg1
2 + 2g2

2
= tanhf2sÎg1

2 + 2g2dt0g. sB9d

Therefore we have

t0 =

ln
2 + sg1 + Îg1

2 + 2g2d

2 − sg1 + Îg1
2 + 2g2d

4Îg1
2 + 2g2

. sB10d

Thus for the relaxation periodt1, from the original configu-
ration at the Hamming distanceN/2 from S1, we have

J0 − Sg1 +
g2

2
D

J0
t1 =

ln
2J0 + sg1 + Îg1

2 + 2J0g2d

2J0 − sg1 + Îg1
2 + 2J0g2d

4Îg1
2 + 2J0g2

3S1 +
2g2

sg1 + Îg1
2 + 2J0g2d2D

−
1

2
ln

sg1 + Îg1
2 + 2J0g2d

2Î4J0
2 − sg1 + Îg1

2 + 2J0g2d2
.

sB11d

Let us derive the equations for the generalm case. For thez,
we again have the expression in Eq.(B8). We derive fort0
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2J0

g1 + Îg1
2 + 2J0g2

= F1 + m

2
tanhst0Îg1

2 + 2J0g2d

+
1 − m

2 tanhst0Îg1
2 + 2J0g2d

G . sB12d

Then for the relaxation periodt1, we derive

t1
J0 − sg1 +

g2

2 d
J0

= t0S1 +
2g2

sg1
2 + Îg1

2 + 2J0g2d2D
−

1 + m

2
ln coshft0Îg1

2 + 2J0g2g

−
1 − m

2
ln sinhft0Îg1

2 + 2J0g2g.

sB13d

The biological situation corresponds to the limit of small
1−m=d!1:

t0 < d
g1 + Îg1

2 + 2J0g2

4J0
Îg1

2 + 2J0g2

,

t1 <

d ln
4eJ0

dsg1 + Îg1
2 + 2J0g2d

2fJ0 − sg1 + g2/2dg
. sB14d
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