PHYSICAL REVIEW E 70, 041908(2004

Solvable biological evolution models with general fitness functions and multiple mutations
in parallel mutation-selection scheme
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In a recent papefPhys. Rev. E69, 046121(2004)], we used the Suzuki-Trottere formalism to study a
quasispecies biological evolution model in a parallel mutation-selection scheme with a single-peak fitness
function and a point mutation. In the present paper, we extend such a study to evolution models with more
general fitness functions or multiple mutations in the parallel mutation-selection scheme. We give some ana-
lytical equations to define the error thresholds for some general cases of mean-field-like or symmetric mutation
schemes and fitness functions. We derive some equations for the dynamics in the case of a point mutation and
polynomial fitness functions. We derive exact dynamics for two-point mutations, asymmetric mutations, and
the four-value spin model with a single-peak fitness function. The same method is applied for the model with
a royal road fitness function. We derive the steady-state distribution for the single-peak fitness function.
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[. INTRODUCTION such an approach can be extended to more general and real-
istic cases. Following our recent workd2,13, in the
present paper we will solve exactly the dynamics of several
more complicated models in the parallel schei®d,6 and
derive some exact results in statics: an error threshold ex-
pression for the model with general fitness functions and
steady-state distribution for the single peak fithness landscape.
Sve are going to solve models with both binary amilore
Fﬁa"StiQ four-value spins. Besides the simplest single-point

the s_electloln and thﬁ Elgeln ngoog.l IS Ié:_alled a connectef}, iation, we will investigate also the case of multiple and
mutation-se e(;:t|or|1 scheme. In the :jow— |g1ura md8el,  asymmetric mutations, which are realistic sometimes
mutations and selections are two independent processes afgh 19 n another papef14], we will study similar prob-

the C_row-K|mura model is called a pargllel Mutation- |o g for the evolution model with the connected mutation-
selection scheme. Both schemes of mutation selection arg,|action schemi8-10.

relevant for biology{5]. Some interesting results have been
derived for both discrete time versiof-10 and the origi-
nal continuous time versiof5-7] of the Eigen and the
Crow-Kimura model.

In 1997 Baakeet al. [4] proved that for the parallel
mutation-selection schenjig] the evolution equations for the S,
frequencies of different species are equivalent to theS1
Schrédinger equatio(in imaginary time for quantum spins

An important application of statistical physics outside its
traditional area is the investigation of simple microscopic
biological evolution model$1-14]. Two famous models in
this direction which have wide applicatioffs] are the Eigen
model[1,2] and the Crow-Kimura moddB,4]. In the Eigen
model[1,2], the species are subjected to mutation during th
process of giving offsprings, so mutation is connected wit

Here we first briefly introduce the Crow-Kimura model
[3] and its quantum spin versigd] so that it is easier to
understand its generalizations to be studied in the present
paper. In the simple Crow-Kimura model, any genotype con-
figurationi is specified by the values & two-values spins
=+1, 1<sk=<N. We will denote such a configuratiarby
=(s,... ,g’j). TheN difference between two configurations
) o S andS=(s’,....5) can be quantitatively represented by
in a transverse magnetic field. Both the st@fifand dynam- the Hamming distancdij:(N—Eksks}()lz, which represents

ics [7] of the model have been solved exactly with a ferro- h ber of diff ins b dS. The relati
magnetic two-spin interaction fitness function. In 2001 Her-the number of difterent spins .etwe:Snan S ne reN ative
frequenciesp; of different configurations for £i<2" sat-

missionet al. proved that the four-state biological evolution . .
model can also be related to a quantum spin mohgl isfy the equations

In a recent papdrl2], we mapped the Eigen model onto a dp N N
quantum spin model with non-Hermitian Hamiltonian. Using ot pi(ri - j:lripj) + Ejzl m;; P (1)
the Suzuki-Trottere formalisfil5-17, we studied the statics
and dynamics of the Eigen model and the Crow-KimuraHerer; are the fitnesgthe efficient number of offsprings per
model with the single-peak fitness functi¢ph3] and found  unit period of timg andmy; is the mutation rate to move from
that the relaxation in the parallel model is faster than that irthe original configuration stat§ to the new genome stag&
the connected mod¢lL3]. It is of interest to know whether per unit period of time and is given by

m; =7y, when d;=1;-Ny,

when i=j; when d; > 1. 2
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point mutation. Equatiofil) with mutation rates of Eq(2)  thresholds for very general fithness and mutation schemes. In
makes sure that the condition Sec. lll, we derive a complicated field-theoretical-like equa-
tion for the dynamics with a point mutation and a general

N
2 fitness function. In Sec. IV, we derive exact steady-state dis-
2 pi=1 tribution for the single-peak fitness function. Using the
= simple ansatz fromil3], we derive in Sec. V exact relaxation
will be satisfied during the time evolution @f. periods for the royal road fitness functifiz0] and in Sec. IV

The choice of different fitness corresponds to the choicdor the realistic case of the four-value spin model. In Appen-
of different functionsr;=f(S). It has been observed i#]  dix A, we give the dynamics for the asymmetric mutations
that system(1) with r;=f(s',...,s") evolves according to (mutation from§— § and from§ — § have different rates

the Schrodinger equation at imaginary time and in Appendix B for the two-point mutations.
92 p (DS =-HX p (19, (3) ll. ERROR THRESHOLDS FOR GENERAL FITNESS
dt; i AND MUTATION SCHEMES
with the Hamiltonian A. Error threshold for quadratics fitness
N and mutation schemes
~H=y> (o} -1 +f(df-- of). (4) Let us consider a more general Hamiltonian
i=1
Here S means the spin configuration of tiNespinss=+1, —H =g(o1- o)) + (o1 0},
|S) is a product ofN spinors, and”™* and ¢* are Pauli matri-
ces N 7
o 1 Lo o)=Y X ekl - D,
X = oZ= I=1 1kq#ko#- £k <N
10/ 0 -1
which operate on the column vectors " Q)
: fof o= X Shefol ok (D
1 0 =1 1=k, ko2 k=N IN
0 and 1
- Heref describes the fithess agdlescribes the mutatiaithe
representing spin up and spin down, respectively. rate ofl-po_int mutations isy /). With the accuracy of 1N,
If one originally has some distribution of frequencia]% we can write
then after a period of timéthe new distribution should be N N | N
w1
> pXsle™|s) gl o) =N 2 =X | -NZ 4
pi(t) = =ae i=1 | \Ni=1 =
I z , 1 N N
—Ht - NgO(NE oﬁ) N2, %
Z=Z p(0Zj, Z;=(Sle™™S). (5 k=1 I=1
ij

For the single-peak fitness function, without lost of gen- N1 1 N
erality we choose f(of--of) =N —| =X of | =Nfy NE o |- (8
k=1

=1 | \Ni=1
f(S)=JoN, when S =(1,1,...,2,
One can calculate the dynamics by means of (&y.In the
f(3)=0, when S§+#8S,. (6)  future we can neglect the constant terngiaf Eq. (8), due to
symmetry of Eqs(3)—«5); see also Ref[13].
To study the dynamics of the system, we should calculate the” 1o define the phase structure of the mogktor thresh-

matrix elements of the Operatﬂ)'(t) Ee_Ht. It can be done in 0|d), we need 0n|y to consider a Simp'er partition

the Suzuki-Trottere formalisrfil5-17.
For the mutation scheme of EG} and the fitness func- Zo=Tre ", (9)
tion Eg. (6), the dynamics has been solved[it3]. In fol-
lowing sections, we will extend the methods[@B] to study i.e., the dynamical problem of Eql) becomes a simple
dynamics for other fithess functions and/or mutationproblem of statistical mechanics.
schemes. We will also calculate the error thresholds for the One can interchange* and ¢ in H and Eq.(9) will be
multiple-site mutationginstead of a single-site mutation in invariant. Therefore, it is possible to get the same phase
Eq. (4)]. structure, replacing the functions of mutation and selection.
The following sections are organized as follows. In the Let us consider a quadratic form for both fitness and mu-
Sec. I, we use the Suzuki-Trottere formalism to derive errottation:
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N N L
H=nSor 2t 3 ol +azoz /Nﬂn NgS Y
1= 2Nk1¢k2-1 k Tk ™ 1 Tk Zy= U5 daTrS exp| N'B§|: oL
L N L N d
E ot ot (10) . 2
2Nk1¢k2 e +2 2 Bss - 1)+ L 2011 N
=1 k=1 1=1
2
. _ E 2 &
To transform the quantum statistical mechanical problem
into a problem in classical mechanics, instead of quantum 2

spinso®, ¢% we introduceN(L+1) classical spins,, 1<k

<N, 1<I=<L+1 (corresponds to introducing the identiiy
=3, |a)a| between any bracket$(|), and use an identity
Tre’B=Ti eV ePL]" for a largel [15]. Using the Stratanov-
ich transformation

N
Y2 B
CERS ML]

N
N

(11

for Z;=(Sle™4|S), we have

L

z B
N L

N
Xexp[<a12 o+ o2 2

k1 2Ngzg=1

L
INBy
L 27rL2 f qurSexp[

Xy + zwz)E o+ (alz of+ 2 ‘7§1‘7§2>§] _

ZN Ky #ko=1 L
(12

Here T means a summation over all spin configurations
2511(:11. We take for the boundary configurations the follow-

ing: s is thekth component of§ ands; ™ is thekth compo-
nent ofS. We then use a representation of thein the basis
of |s), s=+1 and for smalix:

(silems,)y =eBlss2d) @By, (13

For the partitionZ, at the limitL — o, in this way it is pos-
sible to derive[12,16,17

L

1
B=-In———.
72 Blrn+2zv,)

(14

While considering theZ, (instead ofZ;) we sum boundary
spins, which are symmetric=s ). In the last expression
the interaction is only via magnetization = Ek= §K/N We
introduce magnetization variablen, and corresponding
Lagrange  coefficient ph. Using the identity
I, Nfdm&(Nm -2, s'k) 1 and an integral representation for
a & function: (8/2miL) [, dhexd -(Ng/L)hm+£h=, 5]
=8(Nm-3, s, we derive

zozﬂu(g)f dh.f dzdmTr,

1=1

xexp{? [E(alm, + asz'z) - %Zf‘ﬁhm}

+$ <€h|k§1§<+ B|k§1(s[<§:l— 1))}.

(15

Here B=NBIL. In the last expression spirss with different

k decouple and we can perform calculations, considering the
saddle point viamy and h,. We takeh,=h, m=m, z=M, B

:% In[L/B(y,+y,2)] and missing the preexponent terms to
derive

joo o
N
ZoNf dhj demexp{—%Mz—Nma
—joo —c0

m
+ Nﬁ<a1m+ a2?> +NInz(B,h/L,L) - NBL|,

(16)

where ZB,h/L,L] is the partition function of the one-
dimensional(1D) Ising model with inverse temperatuig
and magnetic fieldh/L. We should consider different saddle
point solutions fom andh and choose the one with maximal
value in the exponent.

We have an expression for the 1D Isibhgpin partition in
a magnetic fielch/L [21] at an inverse temperatui:
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L L
h h %
Z(B’_’L>=E exp| B ss1+ 203 5 m=4/1-———. (22)
L s =1 L= (2= 7o)
=Z+z. At the phase transition point, we hame=0. Therefore, error
/ _ _ threshold corresponds to
Here z.={e® cosh(Bh/L)+\e’® sint?(Bh/L)+e ?8}. For a
small Bh/L, we have ay >y + . (23
L . _ — .
z(B,D,L> - eBLKl + E\’,m> Equationg22) and(23) at they,=0 coincide with the result
L L of [4].
:8 L
+ (1 - E\J’hz +(yp+M y2)2> B. Error threshold for the general mean-field-like
mutation and fithess schemes
—~ BL Ih2 2 . . . . .
=~ 2e”costipvh®+ (v +My)T].  (17) Now we consider any mean-field-like symmetric mutation

Combing all the formulas and missing the preexponent, wechemes. Besides the single-site mutation at anyksitéh
rate vy,, there are multiple mutations with a change &f 2

have
_ spins per generation. In this case it is possible to repeat our
* foe M?2 derivations. Let us take one point, two-point and four-point
Zo~ | dmdM| dhexp) N| = By,—- - shm mutations:
-0 -l
m2 N N
+ g<a1m+ az_) +1n2 costipvh® + (1 + 72M)2]} : 9 =nD o+ 2 S ool
2 k1 Ngrg=1 * 2
(18) N N
74 X X
If we put the saddle point condition via, h=a;+a,m, the HINE > ) T Tk, Tk (24)
Ky # ko kg #ky=1

last equation transforms into
For the four-point mutation, we use the formula

ec/A@* = \/E f dxexd - cx? + xa’c]
W —00

=< f dxdyexg— ¢ — cy? + 2cyvxal.  (25)
TJ -

F p[ ( M2 m?
ZO ~ dmdMexp N| - B’)/Z? - Baz?

+1n2 coslﬁﬂ\“’y(al + azm)2 +(y + 72M)2])} -
(19

Herem s a longitudinal magnetization arM is a transverse

one. We see a symmetry under the transformation Let us takea=240i/N and c=NBy,/L. In the Suzuki-

Trottere formalism we should introduce at any ditine in-
@y — Y1, s — Yo, M— M. tegration viadx, dy;, dz [similar to dz integration in Eq.

(12)]. Repeating the calculation of the previous section, for
The self-duality point corresponds to the casg=y; and  the mutation scheme of E¢24) and fitness functiori, we

a2= Y2 derive an expression
Let us consider the interesting casg=0. At the 83— '
and largeN limits, the equations are simplified, and we have * fee 2
~ | dmdzdxdy dhexgd— NBy,— — NByx?
2 —00 —joo 2
1 M m > > i
~InZy— ‘/372?_502?"'5\“(&2”1) +(y+ M7 5 =~
N ~ NByay? + N{ In2c0sHiB\ (7, + 52+ 2y\X)? + h?]
(20 - phm+ Bfo(m)}. (26)
Th_ere is a paramagnet{oo selectiop phase withm=0 and Let us introduce an identity
M=1, and
1 _[ ”
NN Zo=Bn+ 1l2). (21) 1= J_w dbs(b — y; + y,z+ 2y\x)
© joo
In the ferromagnetic phagsuccessful selectionwe should - if f M M(b = v + +2vix
consider the saddle point of EqR0) with nonzerom: 2mi ) J i AMdbexpM(b =y, + 722+ 2y \X)].
M = a1 The integration of the auxiliary variabledx, dy; and dz
a— v, gives
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Z ~ [ dhdmdMdtexp{N[In2cosh 8yb? + h?) — Bhm- BMb fo(S) = fmean (32

+ Bgo(M) + Bfo(m)]}. (27)  Arguments of[6] actually can be applied for any mean-field

. . . fitness. Let us give their qualitative derivation. We assume

We should consider the saddle point of the last integral. At ot i the steady state the majority of the population is at
the limit f— e, the equations become very simple: some Hamming distancé. Then we have immediately for

In Z=Ng[ Vb2 + h2 — hm= Mb + go(M) + fo(m)], the surplus s=1-2d/N z_:md mean .fitnessfmean:fo(l
—2d/N). Therefore we derive an equation
b=go(M), h=fo(m), fo(S) = go(VL ~1mP) + fo(m), (33)
h b wherem is given by Eq.(29). Let us consider a simple site

ms——, M=——. 28 mutation withgy(M)=M+y and a flat peak with a fitness
Vo + 2 Vb2 + h2 (28) 0
R fo(m=JN, mys=sm=<1,
According to the last two equationgb®+h?~hm-Mb=0,
M?+nP=1; therefore we should look for a maximum of f(m)=0, 0<m<=m, (34)
In Z/ B, equivalent to the mean fithess
wherem s the overlap of the configuration with the peak one
InZ _ and the Hamming distance &= (1-m)N/2. Whenmy— 1,
B = NLgo(M) + fo(m)], (29) we recover the single-peak landscape. At the paramagnetic
phase we have IB=Ngy and at the ferromagnetic phase we
takem=m, andM =y1-m3. We immediately derive the error

threshold condition

atm?+M?=1, -1<sm=<1, and —-:=M < 1. Herem describes
the longitudinal magnetizatiom~ < o< andM the trans-
verse one,M~ <g¢g*<. To find the error threshold, we
should find parameters of functiorig and g, such that the Jo> v(1-+1- mg). (35

ferromagnetic-phase solutigsaddle point of Eq(29) with ,
m>0] coincides with the paramagnetic solutiphl=1, m Therefore flatness shifts the error threshold. The role of flat-

=0, f4(0)=0: ness has been investigated in R¢&2—-24. The idea of “the
survival of the flattest” at high mutation rates has been pro-
, L . m posed in[23]. We guess that the role of fitness is more cru-

fo(m) = go(v1 — ) e cial in the stable environment while flatngg®utrality) may

become a main factor in dynamic environments.

go(\e"l - m2) +fo(m) > go(1). (30 C. Error threshold for a single-peak fitness

. . . and any symmetric mutation schemes
We derived Eq(27) for the one-point, two-point and four-

point mutations. It can be derived also if there are any ~ Our results from the previous subsections concern only
=2¢ multiple mutations. For eXplBZy(S/N)'/1] one mean-field-like mutations when two spins are chosen arbi-
should perform several Stratanovich transformatignsari- trary from all sites. A more realistic case in nature is t.he
ablesz for 1=24: the total number of differertt is K=3,k)), existence of some geometry, when, for example, two neigh-

eventually having only first degree of: boring spins are flipped simultaneously. We cannot solve
’ such a situation for the general case of fitness, but the picture

> X : for thg single-peak fitness function_ is very_sim.ple.. In the
exp| > Nﬁﬂ k= Suzuki-Trottere approach, the classical Hamiltonian is a sum
| | N of two terms: without interaction term@ree diffusior) and
with an interaction term, when all the intermediate configu-
* > oy rations§ coincide with the peak on§;. In thermodynamic
f D(2exp d(zy...27) |, (3D |imit, one should keep either interaction term or only muta-
‘°° tion term.
whereDz is some integration measure with a Gaussian dis- For the case of a single-point mutation with a ratg
tribution for a vectorz={z,---z} and ¢(z---z¢) is some double- and triple{neighboy _site ml_Jtations \_/vith a rate,
function. The situation is similar to one in E¢6), and andys, we have an expression fdrin Suzuki-Trottere ap-
(y1+ y,2+2yyX) should be replaced by(z;---z). Perform-  Proach:
ing integration viaDz, we will return to the expression in Eq.

(27). We guess that Eq$27)—30) are correct for any mean- - X X B
field-like mutation scheme in Eq7) and(8), but we could z exp% [(yla)h Y2001+ V30101 L
not prove this conjecture yet. Perhaps it can be proved in the o1 L
general case by means of a high-temperature expansion. BIN Ekai
It has been shown if6] that for the fitness as a quadratic xexpl =\ T (36)
function of magnetization, the mean fitnes$,.,, defines
also the surplus of the distributioe,:EizflpiE,N:ﬁ/N: at p— . When we ignore the diffusion, we have an expres-

041908-5



SAAKIAN, HU, AND KHACHATRYAN

sion INnZ=NJyB. The diffusion term at the limiB— o gives
that InZ=BN(y,+ y,+v3). Therefore we have for the error

threshold
‘]O > Vs (37)

where y=vy,+v,+v; is a total rate of all mutations in the

system. This result could be generalized for any other sym-

metric mutation scheme, witl as a total mutation rate.

Ill. DYNAMIC EQUATION FOR THE
POLYNOMIAL FITNESS

Let us consider the dynamics for the Hamiltonian with a
single-point mutation:

For the partitionZ;=2(S,5)=(Sle"™4|S) at the limit L
— o0, simple derivations similar those in Sec. Il A give

sm}‘(Z,By/L)} f dhf dm

2
X exp[— —E hymy + B; fo(my) — ¥BN

N

o

N
-H=yY (oﬁ—1>+fo< (39)
k=1

LN/2 L ,BN

Z(S,%)=[

+Nln z[B,{hJL},L]} , (39

whereZ B,{h//L},L] is the partition of the 1D Ising model
with inverse temperaturB and magnetic field /L at posi-
tion . If we consideiZ,=Tr € #", then the saddle point equa-
tions for the ferromagnetic phase are

In Zo= N In 2costiBvh? + y2] + NBfo(m) — NhBm— yBN,

h=fy(m),

———tanf g\h? + 2. (40)

h
rh2 ,}/2
To calculate Z;; we consider a continuous function
h(x),0=<x=<1. Thenh, in Eqg. (39) are given by a function
h(I/L)=h.
We define the
=7B,{h/L},L]lexd—-NBL] as

h(l/
2B.100.6)= 3 exp{ B3 (s5.- 1+ 2 s]
S

functional

z(B.,h(x),B)

TrL+oM]] g,
|

gllzeXP[l"',B (X)]

O22= eXP[ 1- ,Bh(X) ]

PHYSICAL REVIEW E 70, 041908(2004

vﬁ

012= 021 = exd - 2B] = (41)

Therefore, we have a representation for g, h(x), 8):

2(B,h(x), 8) = Tr(1 + o) G(B)

R R B
GPB=T exp[ f dx(h(x)o, + yrrx)} , (42
0

where in the right part of the equation the exponent is time
ordered. The last expression is a solution of the equation

dG/dx= G[h(x o+ yoyl.
Then instead of Eq40) one should consider the saddle
point of

N B
In(S[T()[S) =NInTr(1+0*) G(B) + NJ dx fo(m(x))
0
—h(x)m(x)Jdx— yNg,

h(x) = folm(x)]. (43)

Using the last equation we reformulate the variation prob-
lem: to find the maximum of

B
In(S[T()|S)=NInTr(1+0%) G(B) + Nf dx{fom(x)]
0

- m(x)fo[m(x)]} - yBN (44)
over all distributions ofm(x), 0<x< 8, where
R R B
G(A=T exp{ f dx expf fo[m(x)]or, + wx]} ,
0
m(0) = m,
m(B) = m;. (45)

The maximum condition of Eq43) gives

TH(L + %) G(X) o, G(X)~ 1G(,B)
THL +0%) G(B)

m(x) =

. . B
G(B) =T EXP{ f dy{fo[m(y)]o, + Wx}}- (46)
0

One can check that ##8— <, Eq. (46) transforms to the last
equation of Eqs(40) with m(x) =m outside the boundaries 0
and 8. We can compare our equatiga6) with Eq. (61) in
[7]. Actually they suggested an ansatz

G(x) = expix(fo(pmx))a + yarl},
where ¢(s) is some function. In principle it is possible to
solve Eg.(46) numerically to define the relaxation to the

steady state. Having an expressiorﬁtﬁf}) one can calculate
the dynamics of distributionp;(t) using Eqs(5) and (44).

(47)
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IV. SINGLE-PEAK FITNESS LANDSCAPE tion. For thep; from the class the total probability of the
A. Relaxation in a single-peak fitness landscape class is
. . k-1
Let us briefly give the results of our word 3] for the _ N Nk~ 1
relaxation in a single peak fithess landscape of (By. (k=1)!

In the Hamiltonian there are transverse terfusictions
of ¢%), longitudinal terms(function of ¢%), and diagonal
terms(constant termss While calculating matrix elements of dp, 5
evolution operatorS|e™[S), one can miss either trans- ot - o= MNP +y > i PN,
verse or longitudinal terms. This is an exact result at the L. D=1
thermodynamical limit. Let us consider an evolution fromwe can miss the second term on the right-hand side, as the
some original configuratio, having an overlagNm with ~ sum is over configurations of the second class, thereNare
the peak configuratio®;: (Sl|s>=2E=1 sﬁ=Nm First there  ones with a value~1/N. At the statics we have, for the
is a random diffusion phase until the momépntwWhent > t, probability of a peak configuration and mean fitness
one has

While considering the evolution qf;,

_Jo—y
(Silex - Ht]|S) = (S,le™n0|S (S lex - Hint]|S), =75
(48)
wheret, is defined from the maximum condition of E@8). Ejt pirj=(Jo~ »N. (53

For other configuration we take
For thep, we again ignore the influence of thh classes
(Slexd - H][S) = (S|exp - Hairt]S)- (49 \ith k>2 classes and take into account the flux from the first
We miss the transverse part of the Hamiltonian and také&lass. Putting the solution of E¢53) into the equation for
Hine=(Jo=7) | S1(S1| In Hgies, the interaction term is missed. thepz, we derive

When the partition of the peak configuratié®,|e™|S) dp,
is becoming larger than the sum of partitions by other con- o NP2 + ¥P1 ~ P2JoNpy,
figurations;.; (S |eH|S), system relaxes to the steady-
state configuration.
There is an equation fdg: P, = lelN' (54)
0
tant 1tq] 1-m (50)  Inth have for the cldes 1
=, n the same way we have for the ¢
Tk Ike-1+m Y )
wherek=Jo/ 7. Pess = Pik ! (l) . (55)
JN

For the relaxation perioth we derive

It is easy to check that the total probability is equal to 1:
t1(Jo, v,m) Yy p y is eq

i! N! v Jo-y 1
Lem 1-m 14 ___(_) il A Y
Joto = 2 In cosh(yt) - 2 In smf‘()fto)] pl[ iglN'i!(N—i)! Jo } Jo -
= . J
JO_’y 0

(56)

Equationg(53) and(55) define a microscopic distribution of
probabilities in a steady state of quasispecies.

(51)
The error threshold condition is given by E&7).

C. Single-peak landscape with asymmetric mutations

B. Steady-state distribution . . . . .
Asymmetric mutations recently have been investigated in

Let us consider directly the steady-state distribution of26], and several results have been derived for simplified
Eq. (1) with the single-peak fitness of E¢6). We assume versions of the parallel mutation-selection scheme. Now be-

below the error threshold sides symmetric mutations with ratethere are also asym-
o ~1 metric ones with the ratg, and the Hamiltoniaid is given
e by [26]
Piisn) ~ LN, (52) H=[xX (af=1) -yX (io] + o)) | + (o]~ o}y,
I I

whered(i, 1) is the Hamming distance betwe& and S. (57)
Then it is easy to find the steady-state solution. We can group

different configurations with the same distance fr8ginto  where the rate +4:-1 is x+y and the rate -2>+1 is X
the classes. The first class contains only the peak configura-y. We take again a single-peak landscdp8;,)=J,N and
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f(§)=0,i>1. In this subsection we derive the expression for

PHYSICAL REVIEW E 70, 041908(2004

Jo> x+(2k—1)y. (60)

the steady-state distribution and error threshold in Appendix

A we will solve the dynamics.

Let us consider directly the nonlinear differential equation

version of the model with mutation scheme of Eg7). We
assume that in the peak configurations therekigracture of
s=1 and 1k fracture ofs=-1. Now we have an equation

dp
ot =0 x+(1-29yINp —plN. (58)
Therefore we have for thp; and mean fitness
_Jo—x-(2k- 1y
1= Jo ’
(59)

Z pir; = Jo[x = (2k = )yIN.
j

V. ROYAL-ROAD-LIKE FITNESS FUNCTION

The results of the single-peak landscape are meaningful
for the infinite-population limit. Let us consider a construc-
tion for the fitness that can work for smaller populations.
Before we specified the indices of Zonfigurations via the
collection ofN spinss], §~{s/---s\'}. Let us group those-
spins into K  subgroups of n  spins,
~{(s} s, (-8 ++(s " --5))}. There is a hierarchy
structure of configurations with a branchig@g=2". At the
first step we consider just different collections sf --s.
There are 2 points at this level. At the second Ievel we
involve also the second group of spins and consifer
~{(s}),(s]**--s™}. There are 2" points at this level.
At the Ith level we have 2 points and at the lagtth level
there are B spin configurations. The peak configuration has
a spin specificatiors;=1 for all 1<i<N. Such problem is

As p; should be nonzero, we have an error threshold condiexactly solvable in dynamics. We write a royal-road-IjR€)

tion fitness function
|
@:jl[w +51Hsn+1+ +52n:|p_”[SN—n+l+ +SN]"+J.2{S”+1+ +52n]p.__{sN_n+1+ +SN]"+
n n n n n n
+1K[—SN_n+r']“ +SN]p.

We take a mutation scheme as in Eg). For the full con-

our results could be generalized to a large class of hierarchic

centration in the vicinity of the peak configuration we have afithess functions which are realistic in biology. When is such

condition

y<I (62)

a deterministic dynamics valid? A minimal number of mol-
ecules is~2VK, less than B, necessary for the single-peak
fitness function. Perhaps there are collective driven random

similar to Eq.(37). Let us now consider the dynamics. Due walks; then, when the number of individuals is becoming

to our construction, the last group of spins would first
relax. Assume that have an overlap with the peak con-
figuration:E}‘:1 Sn-n+j=NMk. At the first stage only the last

more than Y, quasispecies equations begin to work.
In principle we can give another version of the block spin
interaction, like the original version of the royal road fithness

term in Eq.(61) is relevant. Therefore, the system will relax [20]:

to the configuration with the last subchain equal to

{1,1, ..., after periodty=t;(mk,jx, 7). Next we consider
the step relaxation at th€—1 level. Now the term

. |:SN—2n+ +sN-n]p{sN_n+1+ +5N]p
Jk-1 n n

is relevant. The last multiplier is equal to 1, f§,,+j=1, for

p p
@:,[u} ,Z[u}
n n n

_ + e 4+ p
w[w} | 64

Now different blocks of spins relax in a parallel way; there-

i=1, n. Again we have a situation of fitness function in Eq. fore the total relaxation period should be the maximal among

(6).

After K steps we have

K
t=2t1(j|m,m). (63)
=1

all t;(j;, »,m). The error threshold condition is again given
by Eq.(62).

VI. RELAXATION IN THE FOUR-VALUE SPIN MODEL

Let us consider a mod¢lL1], where at every sité there

wheret, is defined by Eq(51). We used spin model repre- are two spinss’, s for the DNA case one can take the

sentation with integen for the simplicity of derivation and

following identification: ++~A, +—~G, —+~C, ——~T.
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There areA-G, C-T transitions with rateu,; A-T, G-C (SIT)|S) — (Si|Tine(t — o) [S{(S| Taits(to) |S)

transitions with rateus; andA-C, T-G transitions with rate — NGt ~N(g g NI ttg) (66)

1. According to Kimura one takes, > uq > us. It has been B '

proposed in[11] that the evolution dynamics again can be where the function(t,) is defined via amplitudes of transi-

described by an equation like E@) with the Hamiltonian  tion with flips: Nx, like u;, Nx, like wq, Nxg like ug and
N(1-X;—X,—X5) diagonal one:

N a1, p, 13, X1, X0, X3, 1)
-H=2 [pa(a7y = 1) + po(aln = 1) + pa(al 107, 1] =xIn(+ +[e = +) +xpIn(+ + e + )
i=1
| +XgIn(+ +[eMot] — =) + (1 —x3 =X~ Xg)
+1(07,1,012 " 010N 2)- (65) xIn (+ +[efol] + +),
Here operators?,, o, act in the Hilbert space of the first Ho = (1107 + 1203 + p13010%). 67)
spin in the sitei and of,, o7, in the Hilbert space of the In the last system one calculates the matrix element of the
second spin in the site One again has two-spin system. It is easy to derive

A1, 2, 13, X1, X2, X3, o) = (2 = X1 = Xp = Xg)IN[ cost{uto) cost{uato) Costusto) + sinh(uto)Sinh(uoto)sinh(wsto) ]
+X3ln [sinh(u1to)SiNh(u5to) cosHusty) + costiusto) costiuato)sinh(usty)]

+xgIn[sinh(uyto)cosh uato) coshusto) ] + XoIn[sinh(uote) cos waty) coshiusty) . (68)
[
One should take value df from the optimum condition of We can repeat the derivation of Sec. IV B for the steady-
Eq. (66): state distribution. Equatio¢87) is still correct, buty should
be replaced by the total rate of mutations. Thus we have the
Jo= d¢('“1"“2'“3’xl'x2'x3't0)_ (69  error threshold condition
dt
. . . . . . Jo> (pa+ pp+ pa). (73
Havingty, it is possible to define the relaxation period . . . _
For the peak configuration probability, and mean fitness,
_ Joto = Ppa, o, ph3, X1, %0, Xa: o) we have
t, = o= (s + 11y + 12) . (70)
0TV 2T M o (pa+ pot pa)
At the limit of small distance between the original and fit P1= Jo '
configurations; <1, X, <1, X3<<1
1 ii=[Jo— (uy+ po+ N. 74
fo = (X + Xp X, ;pj =0 (ma+ po+ pa)l (74)
Jo
t ~£{(x + X, + X3) In ;] VII. CONCLUSION
UL T (X + g+ Xg) .

1 ] ] 3 To conclude, in the present paper we give a comprehen-
+ _|:X1 N2 +x,In 2 +x;1n _0}_ (71  sive investigation of quasispecies models in a parallel
0 M1 2% M3 mutation-selection scheme. We extend our earlier results

This expression coincides with the corresponding orf & about the dynamics of the model with a single-peak fithess

in the main approximatiogafter the redefinitionly— Jo/ 2). functlcla_n ?n(;j a S'”Q"f muta.tlc;n p(irtgeneraj[[drir»] to mtore
For the Kimura two-parameter model, we haue= us complicated cases: two-point mutations, single-point asym-

metric mutations, and four-value spin models with a single-
and ) . :

peak fithess function, as well as for the royal road fithess

e function. We derive a field-theoretical-like equation, Eqg.

(46), for the dynamics of any mean-field-like fithess func-

tion. We derive the error threshold for the parallel scheme

with any mean-field-like fitness function and rather general
multiple-point mutation schemes, E&0), which can be for-

1
1= —| (X +X+X3) INn ————
! Jo[(l 2+ %) (X + X + X3)

1 J J
+—{(xl+x3) In—°+x2In —O} (72
Jo M1 M2

041908-9



SAAKIAN, HU, AND KHACHATRYAN

mulated as a simple maximum problem for HQ9). It
should be noted that iri26], the authors considered the
mean-field fitness for a simplified parallel scheme model: the
maximum principle considered irf26] qualitatively re-
sembles Eq(29) of the present paper.

The quasispecies concept is becoming more and more
popular[25]. In the present paper, we show that many prob-
lems for parallel modelf3,4,6 can be solved exactly; there-
fore there is no need for a further simplification of the evo-
lution models, which is the usual practice in biological
research. Some principal aspects of evolution could be
missed due to too much simplificatigm3].

We hope that our exact results for parallel modelsor
thresholds, surplus, steady-state distributjocmuld be use-
ful for practical applications, as parallel scheme sometimes
are related to real systenis,6] and sometimes one is using
them as a methodologically simplécompared with Eigen
mode) way to investigate complex biological problefi?].

The methods developed in this work for the complicated
mutation scheme could be applied to solve exactly the mu-
tation landscape introduced j27]. The mutation landscape
could be quite realistic for retro-virus¢28].
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APPENDIX A: ASYMMETRIC MUTATIONS
FOR TWO-VALUE SPINS

To solve the dynamics of the system defined by the
Hamiltonian of Eq(57), we need to calculaté:|exd At]| +)
with A=xc*~iyoY—-ya*. First we should make diagonal the
matrix A with elements ¥y, x-y; x+y, y. We have for the

PHYSICAL REVIEW E 70, 041908(2004

(+[TO] +) = eM(1|1)as + (2 V)aya,]
+eM[(2]2)a3 + (1]2)aa,],
u+w}

2%?

Lol XEY? O (x+y)
Xt _
e [ 2x2 2x2

1
= ex{(xzﬂlz)ﬁ -y

} ; (A3)

(= [T(V] - = (2| 1)b2 + (2| 1)byby]
+ ézt[<2|2>b2b2 +(1]2)b;b,]

1 X-y
= e“[(x2 tY)oat y—}

22
—v)2 _
+e‘x{ (X2x¥) +y(x2X2y )] (A4)

(= [TV +) = (11)ash; +(2[1)ayb,]
+e[(22)ab, + (1|2)b;a,]

1 X-y
—oxtl (2042 8
_e?<[(x +y)2x2+y2x2]

. 1 Xty

+e t[(y2 X055~ YW} ., (A5)

(+[T(V] - ) = M2 Dyayby +(2[1)bsay]
+e[(22)ab, + (1|2)b;a;]

1 X+y
— xt 2 2y_— _y— 2
ex[(x +y)2X2 yZXz}

2 2
| Y X Xty
te Xt{ 2 y?} . (AB)

For given initial and fit configurations one should calculate
the number of different mutations,,~(+|T|+), n__
~(=|T[=), ne-~(HT|=), andn_, ~(=[T| +).

We take

eigenstates
N1o= %X,
11 ={(x=y),(x+y)},

Bxy,t) = In[(+[TO)] +)™(=[T()]-)"-

12)={1,-1, X (+ | T(t)]= Ye~(= [T(t)] +)"™+] (A7)

(An=20¢+y?), (22=2, (U2)=-2y. (A1

Thus there is a representation

and derive relaxation periodsg, t;:

1 ( ) \]0 _ d¢(X,y,t0)
ot xoy) Codty
Fy= - ), o
Joto = d(X,Y, o)
1 — 00 0
|+>:5(|1>+%|2>. (A2) P domx-y(2k- 1) (A8

A is not a symmetric matrix; thus two eigenvectors are noiWe used the fact that
orthogonal. Let us expand+)=a;|1)+a,|2), |-)=b;|1)
+b,|2). Then we have

(Sylexpd - Ht]|Sy) = exd JoNt — Ny(2k — 1)t].
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APPENDIX B: DYNAMICS FOR TWO-POINT
MUTATIONS

Let us consider the dynamics of the system defined by th

Hamiltonian

~H= ylE(af 1)+K|22 (XX = 1) + (o o).

1=<i<j
(B1)

In the Suzuki-Trottere scheme one needs to calculate
N

>

1<i<j=1

N
<s|exp<y1t2(oif—1>+%t (oifo?-D)I%%
i=1

Let us perform Stratanovich transformation

exp[N > 0)(0)(:| p|:—
1l<i<j=N

t
2yt X O)i(—Ny—z]-

1<i=N 2
(B2)

Similar to the derivations in the Sec.

(STM]S),
(SuITin(t = o) [S{S Tais(t0) | S)

N ee]
= A lz—f dzexgNep(m,z,to) — N(y; + y2/2)tg
T) e

+ NJo(t_to)] (83)

The saddle point condition by gives

— 1+m [
2=\ 72t0|:7tanr(71t0 *V72lo?)

N 1-m ] (B4)
2 tanh{yyty + V/Ez) '

The functiong(m,z,ty) in Eq. (B3) is defined as

22 1+m —
57 In cosh yito + 2V yato]

d(m, z,tp) = 5

+

m . —
In sinH yato + 2V y2to],

(SuITin(t — t0)[S{STaiss(to) S

- eN¢(m,Z,t0)—N(y1+ Yol 2)tg+NJp(t-tg) . (BS)

To find the relaxation perioti one should consider an addi-
tional constraint that the contribution of Ed@3) to partition
Z=3(S|e™"|S) is larger compared with the contribution of
other configurationsy;.i(Sle™™|S)=1:

exdNg(m, z,to) = N(y; + v2/2)t; + No(t; — t)] = 1,

I, we take for

PHYSICAL REVIEW E 70, 041908(2004)

Joto = p(M, o)

—(y1+72/2)
Eet us consider first the case=0. Now we have a simpler
expression for thep:

4= (B6)

Z 1
d(m,z,tp) = — + - In Sln}"[z(ﬂto +2y tho]

The saddle point condition via andt, gives a system of
equations

Vigy2 —
—— =tanf2(y,tg + Vyote2) ],

Y2

% = tanf2(y1to + \y2te2) ],

L2
Y1 2

Jo

In{sinH 2(y1to + 2V y5t) 2}

5 (B7)

Z
Pltg) = - > +

We can simplify this system. Let us pdg=1; later we can
recoverJ, using a rescalingyy— o/ Jo, v1— v1/Jo. First, z
can be expressed Ity from the first and second equations of
a systemB7):

oyt Wz+272

Then we can derive thig:

—_—
7t \"?’i +2v,

> (B9)

R
= tanH2(\ 92 + 2y,)to).
Therefore we have

I

n2tont VYA +2y))

2-(y+\+ 2,)
Y2+ 2y,

Thus for the relaxation periot], from the original configu-
ration at the Hamming distand¢/2 from S;, we have

I
J- ( 72) n ZJo+(71+ V% + 230,
n* 2 _ —(y + )’2 +2J57)
Jo ' 4V/ Y+ 2307
2
X (1 + / Y2 2)
(y+ 7’2 +2J572)
iate
 nt A2y

l
2 V435 - (71*'\' i+ 2J072)?

(B11)

ty= (B10)

Let us derive the equations for the generatase. For the,

we again have the expression in EBS8). We derive fort,
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2Jo 1+m —_— The biological situation corresponds to the limit of small
] =3 tanh(te\ 4 + 2Jp72) 1-m=6<1:
Y+ ¥+ 2oy,
1-m
+ / . (B12
2 tanhto\ 74 + 2Jyy,)
Then for the relaxation periot], we derive Y1+ Vs + 2]y,
to = —1
Jo-(n+2) 2 4\ ¥i + 23072
o~ \"1T %) _ Y2
"=ty 1+ / 5
Jo (i + 7+ 2307)
1+m I e
- =i costitoy ¥4 + 23y
dedy
1-m N E— din
= =5 InsinttoV 7 + 2Jo,]. Ay + V% + 237 (B14)
t; =
(B13) o= (71 + 72/2)]
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